FLOW OF NON-NEWTONIAN FLUID BETWEEN TWO
COAXIAL CYLINDERS UNDER COMPLEX SHEAR CONDITIONS

8. A, Bostandzhiyan, V. I. Boyarchenko, UDC 532.542:532.135
and G. N, Kargopolova

The flow of a non-Newtonian fluid with an exponential rheological equation is investigated
in the barrel of an extruder screw with consideration of the presence of circulating motion
of the fluid in it.

In a hydrodynamic analysis of the flow of polymer melts in the barrel of an extruder screw, one
usually uses a plane model of the screw, i.e., one investigates the flow of a non-Newtonian fluid with an
exponential rheological equation between two parallel plates, one of which is stationary and the other moves
at a constant velocity in a direction opposite to the movement of the plate, and a pressure gradient acts
in the gap between the plates [1-3]. The plane model of a screw does not take into account the curvature
of the screw barrel, whose effect on the characteristic of the screw and on the flow pattern increases
with an increase of the degree of deviation of the properties of the material being processed from the prop-
erties of a Newtonian fluid and relative depth of the screw barrel. A cylindrical model of a screw was
used for taking into account the curvature of the screw barrel in [4, 5]. This model represents two coaxial
cylinders, one stationary and the other rotating with a constant angular velocity. A tangential pressure gra-
dient acts angularly in a direction opposite to that of the rotation of the cylinder in the annular gap filled
with fluid with an exponential rheological equation. Both these models assume that simple shear occurs
during flow of the material. In the plane model the trajectories of the fluid particles are parallel straight
lines, and in the cylindrical model the motion of the fluid particles occurs along concentric circles.

In reality fluid flow in the barrel of an extruder screw has a considerably more complex character.
Since the tangential velocities of the fluid particles adjacent to the hub (in reversed motion) are directed
at an angle to the axis of the screw barrel, then in addition to longitudinal fiow along the axis of the screw
barrel, which determines the output, there arises a circulating flow in a direction perpendicular to the
axis of the screw channel. If the fluid is Newtonian, then by virtue of the linearity of the relations between
the stress and strain rate tensors neither flow has an effect on the other and both flows can be treated
separately. If the rheological equation is more complex, not linear, as in the power law, then generally
speaking the transverse circulating flow will have an effect on the flow in a longitudinal direction and
ultimately on the output. Complex shear was investigated in [6] in connection with the plane model of a
screw. Here we will consider the flow of 2 non-Newtonian fluid with an exponential rheological equation
between infinite coaxial cylinders under complex shear condition as related with the cylindrical model of
a screw.

1. Let us consider the motion of a fluid with an exponential rheological equation in the barrel of an
extruder screw (Fig. 1a). The velocity of the fluid particles can be decomposed into two components, one
of which vx is directed along and the other vy across the barrel axis. We neglect the effect of the edges
of the screw and for greater clarity we will henceforth consider reversed motion, considering that the
casing of the extruder rotates about a stationary screw. To take into account the curvature of the screw
barrel, we will use a cylindrical model of the extruder and investigate the fluid flow between two infinite
coaxial cylinders (Fig. 1b). The inside cylinder of radius R, is stationary and the outer cylinder of radius
R, rotates at a constant linear velocity vy. The x and y axes correspond to the longitudinal and transverse
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Fig. 1. Schematic diagram of the screw barrel andits
cylindrical model.

directions relative to the axis of the screw channel. Let constant pressure gradients 0P/ 8x = A; > 0 and
aP/ 8y = A, > 0 act along these axes in the annular gap, whereby we will consider A; to be given and A,

to be the unknown quantity.
The equations of motion in eylindrical coordinates have the form

19 (r*v,e) = op , 129 (r7,,) = i (1)
or I r or dz

-Assuming that the pressure gradient along angle 8P/ 8¢ acts on circles of radius ry = Ry +R,)/2, we can

write
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Strictly speaking, the helix angle changes along the depth of the screw barrel. We will neglect the change
of 4 due to the radius. By 6 we mean the value of the helix angle at an average radius.

Integrating (1) and taking into account (2), we obtain
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where C; and C, are constants of integration.
The rheological equation in a general form is written so [1]:
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The effective viscosity in the case being considered has the form
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Taking into account (3), ), and (5), we obtain the following system of equations
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System of Egs. (6) can be written in a dimensionless form so:
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Dividing one equation by the other, we obtain the relation between the components of the strain rate tensor
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Using this relation, we can transform the system of equation to a form not containing nonlinear terms
with velocity components:
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Thus, the system of equations was decomposed into two equations, which we can integrate separately.
Equations (7) must be solved with the following boundary conditions:
=1, =0 when { =1, v =], 0; =0 when [ =b. (8)

We integrate Eqgs. (7) and satisfy the first pair of boundary conditions (8). As a result of integration
we obfain
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The longitudinal and transverse velocity components in the screw barrel are expressed in terms of
vi and vy by the formulas

v, = v, cos@ —u;; sinb, v, = v sin6 4 v cosb. (9

We calculate the flow rate of the fluid in the direction of the axis of the screw barrel and in a trans-
verse direction. Taking into account the assumption of the constancy of 6, we can write the expressions
for the flow rates in longitudinal and transverse directions per unit width of the barrel and length of the
edge, respectively, so:

b b
Q= 5 0d;, Q= 5 0,dZ.
i I

Replacing v; under the integral sign, according to (9) we obtain
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Fig. 2. Profiles at linear velocities v; @) and v, (b)
for different values of @: 1) @ = 0.7-107%; 2) 0.37-107%;
3) 0.101; 4) =
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After changing the order of integration we have
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Proceeding analogously with the second integral, for flow rate Q, we obtain
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The constants of integration C; and C, and parameter a remain unknown. They are found as a result
of satisfying the second pair of boundary conditions (8) and from the condition of equating the transverse
flow rate of the fluid to zero. Thus, to find C;, C,, and a we arrive at the following system of equations:
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2. The values of C;, C;, and a were found and the velocities vy, vy, and volume flow rate @, were
calculated on a2 computer by numerical methods. The results were compared with those obtained earlier
in [4], where fluid motioh between two cylinders under simple shear conditions was considered. In this
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Fig. 3. Curves of the dependence of the dimensionless flow rate
Q on the pressure gradient 4; (G/ cm®) for different velocities
vg: 1) vy = 12.5 cm/ sec; 2) 25; 3) 50.

Fig. 4. Dependence of the dimensionless flow rates Q on the
pressure gradient A; (G/cm?®) in the case of simple and com-
plex shears for different values of n: 1) n = 0.81; 2) 0.22; 3)
0.29.

study the rheological equation of the fluid was written in the form
do
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To establish a correspondence hetween the cases of simple and complex shear we must set
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where w; is the angular velocity of rotation of the outer cylinder in the case of simple shear. The cal-
culations were performed for the following values of the parameters: 6 =20°, R; =2 ¢m, R, =2.5 cm,
wy =4.7 sec™!, m =3.5, k =0.01 (cm?/G) sec-!.

In Fig. 2a the profiles of the velocity components along the axis of the screw channel are shown by
the solid lines and the corresponding profiles in the case of simple shear are shown by dashed lines for dif-
ferent values of the dimensionless parameter «. The difference between the corresponding curves in-
creases with increase of «. In the region of the values of parameters at which the gradient of the longi-
tudinal velocity does not change sign inside the gap, the profiles of these velocities have a point of in-
flection in the case of complex shear. The phenomenon of the inflection is explained by the effect of the
transverse velocity on the longitudinal by way of the effective viscosity. Figure 2b shows the transverse
velocity profiles. As we see from the figure, the dependence of v, on « is weak.

Figure 3 shows the effect of the velocity of rotation of the outer cylinder on the dependence of the
dimensioniess flow rate Q; along the x axis on the pressure gradient A;. The point Q) = 0 corresponds com-
pletely to closed emergence from the extruder. When A; = 0 the dimensionless flow rate does not depend
on the rotational velocity.

For comparison of the results obtained in simple and complex shears, Fig. 4 shows the curves of the
dependence of the dimensionless flow rate of the fluid Q; on the pressure gradient A, for different values
of n. The solid lines correspond to complex shear and the dashed lines to simple. We see from the figure
that for pseudoplastic fluids at the same values of the pressure gradient, the flow rate in the case of com-~
plex shear is less than in the case of simple shear. This is explained by the fact that during flow of a fluid
under complex shear conditions its effective viscosity is less than under simple shear conditions, which
leads to an increase of the effect of counterpressure. For dilitant fluids the effective viscosity and the
flow rate in the case of complex shear will be greater than the corresponding values in the case of simple
shear.
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A characteristic feature of flow under complex shear conditions is the weaker dependence of the
dimensionless flow rate on n in the absence of counterpressure (in Fig. 4 the solid curves originate from
different points on the y axis, but owing to the smallness of the scale the latter merge). On the whole the
character of the dependence of the flow rate on the pressure gradient in complex shear is more monotonic
than in simple shear.

Thus, the flow of an exponential fluid between two cylinders under complex shear conditions gives
a different picture of the velocity distribution than in the case of simple shear, which at ceriain values
of the parameters can have an effect on the flow rate. Consideration of the transverse flow is necessary
if one is considering the problem of heat transfer in the barrel of an extruder screw, since the contribu-
tion of the transverse component of velocity to dissipative heating is considerable.

NOTATION
r, ¢, Z are the cylindrical coordinates;
X, ¥ are the directions along and across the screw barrel;
Ry, Ry are the inner and outer radii of the cylinders;
Ty is the average radius;
® is the helix angle;
T is the stress tensor;
A is the strain rate tensor;
Trgs Tzz are the components of the stress tensor;
Nef is the effective viscosity;
Mgy N are the rheological constants;
A7) is the linear velocity of points of the outer cylinder;
P is the pressure;
Ay, Ay are the pressure gradients;
& is the dimensionless radius;

Vis VII» V1, V3 are the dimensionless velocity components along axes ¢, z, x, and y;
is the radii ratio;

a is the pressure gradient ratio;
o is the dimensionless parameter;
Qs Q are the dimensionless volume flow rates along and across axis of barrel.
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